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Nonequilibrium velocity distributions in liquids: Systems under shear
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A Green-Kubo expression for the nonequilibrium correction to the velocity distribution function is studied in
a molecular dynamics simulation for systems interacting through a 6-12 potential and undergoing linear shear.
As a function of velocity, the first correction to the distribution function has a form similar to what would be
obtained from the Boltzmann-Enskog equation, although the amplitude is qualitatively different, except at
infinite dilution. The difference comes from elastic effects seen in the short-time behavior of the underlying
time correlation functions.
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I. INTRODUCTION tity B, using Kubo's linear response theofgf. Ref. [8])
presented in Ref5]. The fundamental microscopic equation
The study of distributions and correlation functions in governing the behavior of the distribution function or density
nonequilibrium systems is a central problem in statisticaimatrix in classical or quantum nonequilibrium statistical me-
mechanics. In dilute gases, the Boltzmann equdtioB] or  chanics is the Liouville equation, i.e.,
its generalization§3] are the usual starting points, while in
dense systems, several approaches have been used, some af(t) .
phenomenological, some based on kinetic theory, and others ot —ILOF(D), (2.)
on linear response theof¥]. Much of this work focused on
the configurational distribution function, which exhibits \yheref(t) is the distribution function or density matrix, the
long-ranged correlations in simple nonequilibrium steadyj j5uville operator is defined as
states[5—7], thereby making them more amenable to mea-

surement. Nonetheless, there are nonequilibrium corrections :
to the velocity distribution, and while hard to measure di- {.A'H(t)}’ classical, 22
rectly, they are easy to probe indirectly through their contri- iL(HA={ I 2.2
butions to the nonequilibrium stress, heat current, etc. In this ;}[A'H(t)]’ quantum,
work, we will examine the corrections to the velocity distri-
bution function in systems linearly displaced from equilib- 3¢ where{...,...} and [...,...] denote Poisson
rium, and, in particular, will apply the theory to fluid systems prackets and a commutator, respectively. Following Kubo
subjected to a linear shear gradient. [8], we write

The approach we follow is based on Kubo’s linear re-~
sponse theory8] and was used to consider correlations in _
simple nonequilibrium fluid systemi&—7]. This theory is HO=HotH, (D) 23
summarized in Sec. Il with the particular goal of the linear d
correction to the velocity distribution function in mind. We
end up with a modified Green-Kubo expression for the cor- L(t)=Lo+L,(1) 2.4

rection, and this is calculated in a molecular dynamics simu-
lation of particles interacting through a 6-12 potential. The i o
results of the simulation are presented and discussed in Se¥hereHo governs the behavior of our system at equilibrium
IIl. Two of these results are noteworthy. First, the underlyingWhile H1(t) is responsible for taking the system out of equi-
Green-Kubo time correlation functions all show a short-timelibrium, and is written as

increase, which is analyzed in detail in the Appendix. Sec-
ond, the functional form of the correction to the velocity

correlation function is well described by a one Sonine poly-
nomial expansion, just as is found in the Boltzmann and
Boltzmann-Enskog equationsyen at liquid densitiesThe where F(r,t) is an external field, and whera,(r) is a

coefficient qf this expansion is qualitatively different from mechanical variable or operatdkVe use sans serif type to
that found in the Boltzmann and Boltzmann-Enskog ap-

. . . note a column vector of variablgs.
proaches, the difference being related to the short-time ege 0 o ° 0 Ps

fects. Finally. Sec. IV contain 0 ncluding remark If Eq. (2.2) is solved perturbatively to first order in the
ects. Finally, sec. 1V contains some concliuding remarks. - o, arna fields and the result used to compute the average of

a mechanical variablB, it follows that

Hy(t)=—AxF(t)=— > JdrAa(r)Fa(r,t), (2.5

Il. THEORY

A. Linear response

~ t . ~
b(t)=(B(t —B~—JdB t—s)AyxF(s),
In this section, we briefly summarize the derivation of a (O=(B(V)ne=(B)~ 5 — Brupdlt=S)A)*F(S)
linear constitutive relation for an arbitrary mechanical quan- (2.6
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where 3=1/kgT, (- --)yg and(- - - ) denote nonequilibrium the zero-wave-vector limit, one can evaluate the time corre-
and equilibrium grand canonical averages, respecti@glt)  lation functions containing thA’s at zero time.

is the time derivative of the mechanical operaByrand the Equation(2.9b generalizes the well known Green-Kubo
subscript Kubo indicates a so-called Kubo transform, relations for the transport coefficierftwhich are obtained if
namely, Eq. (2.9 is used for the stress tensor or energy cufrent

There are alternate derivations of this result and the deriva-
1 . tion can be extended to nonlinear order or further resummed
Brubo(t) = fo dA B(t—i Bfi), (27 in several waygsee Ref[9]).
Here we are interested in the nonequilibrium singlet ge-
and, of course, is necessary only for quantum systems. ~ neric distribution function in a system subjected to a uniform
In a relaxation experiment, the system is removed fronshear. This corresponds to taking
equilibrium by adiabatically switching on the external fields;

N
whent=0 is reached, the fields are removed, and the system ) — . o
relaxes back to equilibrium. Under these circumstances, Eq. B(r’p’t)_iz'l or=r(0)oP=p(v), 213
(2.6) gives
wherer; and p, are the position and momentum of thi
. [(BKubo(o)A)*ﬁF for t<0, particle, respectively. By taking the nonequilibrium state
b(t)=9 . . (2.8 variablesA to be the densities of the conserved variables,
(Bkubo(t)A)x BF  for >0, energy €), number (), and momentumR), and by as-

suming a steady uniform shear gradient Ej9b becomes
where we have assumé(qt) =e'F for t<0, e—~0+. g y g E219D

Equation (2.8) is not quite what we want; it gives the dner.p)=p YB(r,p;t))ne=d(p)[1+ Bp-v()]
average deviation from equilibrium in terms of the initial .
values of the external fields used to produce the nonequilib- +AD(p):Vo(r), (2.12
rium state, and as such, long-range effects, like those associ-
ated with the boundaries of the system, may have to be cotwhere p=N/V is the number density (r)=p(r)/mp(r) is
sidered when calculating the time correlation functions.the local velocity,
Moreover, we will require the correlation functions for mac- o2kt
roscopic times. Both of these difficulties are associated with _ ¢ Prizmte 2.13
the macroscopic behavior of the system, behavior well de- ¢(p)= (2rmkgT)32 '
scribed by phenomenological equations, like the hydrody-
namic equations, etc. On the other hand, we expect thas the equilibrium momentum distributiom is the mass of
many quantities have simple constitutive laws giving them inthe particles,
terms of some finite set of nonequilibrium state variables that

specify the long-time and -length scale phenomena; e.g., the 2 S(p— p_(t))?g
densities of conserved quantities or broken-symmetry vari- - % i ! T
ables. A‘P(D)EfO dt NKkaT : (214

To obtain this constitutive relation, at least in the linear
approximation, we simply use E@2.8) to expressBF in op 1
terms of the deviations of the state variablé® a's) and ?TEZ #+ > 2 ri.iFij (2.15
then use the result for an arbitrary average; for a classical ! 171

system, this gives is the well known expression for the stress tensor in a one-

component system interacting through pairwise additive

b(t)=(B(H)A)x(A()A) " +a(t) 293 forces, andsee Eq.(2.10]
{(éAp(AA}1—ftds<B*(s)A¢>*<A(s)A>l «a(t), =T (%) N+(% E}, (2.16
0 (2.9 P /e €/,

wherepy, is the equilibrium pressure are=(E)/V. In ob-

where, henceforth, we focus on classical systems, and dragining Egs.(2.12 and(2.16) some simple equilibrium mo-
the Kubo subscripts. The quantity mentum averages have been carried out.

) . o ~ The first of the nonequilibrium terms in ER.12 has a

B*(s)=B(s)—(B(s)A)*(A(s)A) %xA(s) (2.10 trivial origin; namely, it is there to correct the equilibrium

) distribution to the local rest frame, or local equilibrium, of

is called the dissipative part d&(s), and is the part of the the fluid (here to linear ordgrand is analogous to what is
rate of change oB not described by the linearized macro- found in the leading order Chapman-Enskog solution of the
scopic equationgcf. Eq. (2.9b]. In particular, when the time  Boltzmann equatioricf. Ref.[1]). By using the methods of
scales associated with ti#és are much longer than that &f Ref.[9], it is straightforward to show that this is no accident,
as can be the case for the densities of conserved variablesamd that all the higher-order nonlinear corrections arising
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from the transformation to a local rest frame are present and . 1 .\
can be resummed to show that A(I)(p)=2(§§— §§21) > b LX) p(p), (2.20
n=0
$(p)— P(p—mo(r)). (2.17)

whereL>(x) is a generalized Laguerre polynomiar So-

In general, this is a trivial effect, and henceforth we assumdin€ Polynomial [1], {&=p/y2mksT is a reduced momen-
that the measurement is done in the local rest frame, i.etum. and the factor of 2 was introduced to follow Chapman
v(r)=0. and Cowling’s notation. By using the orthogonality proper-

On the other hand, the last of the nonequilibrium terms infi€S Of the Sonine polynomialsee Ref[1] or [10)), it is

Eq. (2.12 does not have a trivial origin, and its computation straightforward to show that
is the main objective of this work. The time correlation func-

tion in Eq.(2.14) is also a tensor function of the momentum, niT (%) -

and as such will be more difficult to simulate than the Green- b,= . f dp Lﬁ’z( 2)pp Ad(p).

Kubo time correlation functions for the standard transport 10mksTT'(z +n)

coefficients. (2.2

Some simplification can be obtained by considering
steady states or incompressible fluids, and we assume tﬁi_%sﬂy, by using the linear response expressionﬁf@(p)
henceforth. In either cas®,-v(r)=0, and thus, the diago- [cf. Eq.(2.14] it follows that
nal parts of the time correlation function may be omitted.

Symmetry can be used to further simplify the expression;

in an isotropic system, it follows that the integrand appearing L52(22(t)o (1) b (t ;
in Eq. (2.14 can be written as b nil(3) fmdt Z n EOIPOR DTy
" 100z +n)Jo m(k,T)2N
- 2.2
<Ei o(p~ pi<t>)rT> . (2.22
Clr.b= NkgT - ( PP— §H Clp.b), These coefficients will be evaluated in the molecular dynam-
(2.19 ics work to be presented below.
where thee denotes the traceless part, and where C. Molecular dynamics
. The time correlation functions were calculated in a con-
3> 5(p—pi(t))pi(t)pi(t);?T> ventional molecular dynamicgMD) simulation. Following
C(p,t)= i . (2.19  Verlet(see Ref[11]), a system of 864 particles were placed
8N7kgTp on a face-centered cubic lattice and the dimensions of the

cell adjusted so as to give the desired density of the gas or

This last result is obtained by doubly contracting with mo-|iquid. An initial set of velocities is assigned, drawn from a
mentum vectors and integrating over a unit momentumviaxwell-Boltzmann distribution appropriate to the tempera-
sphere. Note that thé function is for themagnitudeof the  tyre of interest, with a total linear momentum equal to zero.
momentum, and gives some sampling advantages in the ntrhe temperature was reequilibrated during aging by calculat-
merical work to be presented below. ing the average kinetic energy and rescaling the velocities to
give the desired kinetic temperature; this was repeated until
the average was within 0.25% of the desired value; thereaf-
) ) o ) ter, it was allowed to fluctuate, and a further aging period

Another way in which to simplify the calculation of the 55 performed before starting any averages.
correlat_ion functions n_eedgd for the distribution furjction is Trajectories for all the particles were computed by inte-
to consider an expansion in terms of some convenient COMyrating the equations of motion using the Schofield algo-
plete set of functions, thereby avoiding the sampling issuegthm (see Ref[12]), periodic boundary conditions, and Ver-
associated with thé functions that appear in Eq2.19. In |y pookkeeping technique for handling the interactions
Rej. [6] it was shown how the general expressions for[11]. The coordinates and momenta of the particles as well as
Ad(p) give results identical to those of the Chapman-the forces acting on every particle were stored, and thermo-
Enskog solution to the Boltzmann equation to leading ordedynamic and other properties were calculated as discrete
in density. Hence, this suggests that we use the same funtime averages over the dynamical history of the system.
tions as those used in the Chapman-Enskog theory, and as aThe bining over momenta involved in computi@jp,t)
by-product this choice will allow us to easily study the range[cf. Eq. (2.19], increases the sampling error in the simula-
of validity of the low-density results. tion, especially for improbable momentae., for p—0 or

The Chapman-Enskog solution gives an integral equatiop—c), and consequently very long averages must be per-
for the correction to the distribution function that is solved formed. It is neither practical nor necessary to store the entire
by expanding in Sonine polynomials. Thus we write dynamical history of the quantities of interest in order to

B. Sonine polynomial expansion
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FIG. 1. The correlation functioi©(p,t) (in the reduced units FIG. 2. The reduced correlation functi@{p,t)/C(p,0) for the
described at the beginning of Sec)fior T*=1.5 andp*=0.5for 11 largesiC(p,t)’s shown in Fig. 1. The inset shows the time inte-
reduced momenta equally spaced in the rangesp’5<7.5. The  grals decreasing in order of increasing moment(h Fig. 3
averages were obtained by averaging the results of 16 independeiélow).
runs, each of length fQ(in reduced units

compute their correlation functions. Since the calculation of " th€ numerical work, units where=1, m=1, ande=1
the time correlation functions will involve expressions of the '€ used; and we define the reduced temperature, density,

form time, and momentum asT*=kgT/e, p*=pos, t*
=t\/e/ma?, andp* =p/\/me, respectively. Note that the re-
duced time differs from Verlet'$11], by a factor of/48.
CO=y gfo At+9)B(s), (223 | ke Verlet [11], we use a potential cutoff at a distance of
2.50, a maximum radius for the bookkeeping tabiich is
where typically O<t<T,,,<M (integer times are assumed updated every 16 time stepsf 3.30, a reduced time step of
here, the convolution can easily be performed using fast4.6188<10°3, and an aging time of 1.4434. For argon,
Fourier transformgFFT’s) and a variant of the overlap-add e/kg=116 K ando=3.465 A[14], thus resulting in a time
method[13]. The sum is decomposed inky blocks of M’ step and an aging time of 1.830  and 3.2<10 *?s,
terms and Eq(2.23) is rewritten as respectively. A typical average was about $610 7 s long.
Figure 1 shows the time correlation function correlation
C(p,t) as a function of time for a reduced density of 0.5 and
NRYL mzzo 520 A(t+s+mM")B(stmM’). reduced temperature of 1.5. The inset shows the time integral
B (2.24) J5dt C(p,t) and shows that the integrals plateau on a micro-
scopic time scale. The different curves are for uniformly cho-
The innermost convolution is early performed by zero-sen values of reduced momentyrh. In general, the overall
paddingB and then using a FFT fo¥l + T, points. The magnitude of C(p,t) follows C(p,0)*p?¢(p) [cf. Eq.
results for the differenin-blocks are then added together (A1)]. The relative noise increases as the tails of the distri-
practice, this requires one to save the valuesA@r) and  bution or long times are approached, the latter as expected
B(t) for (m+1)M’'<ts(m+1)M’'+T,,,,before zero pad- from the analysis in Ref.15].
ding]. Note the initial rise of all the correlation functions; as is
shown in the Appendix, the initial curvature is, in general,
Il. RESULTS AND DISCUSSION positive for the 6-12 potential, and our data are consistent
with this analysigcf. Eg. (A8)]. The short-time analysis also
The theory described in the preceding section was implepredicts that the initial curvature in the reduced correlation
mented for particles interacting through Lennard-Jones 6-1&nction C(p,t)/C(p,0) should be independent of momen-
potentials tum. This short-time behavior is confirmed in Fig. 2, al-
P12 (g6 though the behavior at longer timénd consequently in the
7 (]

M-1

Ng—1 M’'—1

C(t)=

integra) depends on the momentum.

u(ry=4e A momentum-dependent relaxation time is defined as

(3.9
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T T T T I P this correction should be and none was introduced here. It
g seems that they are not too important @(p,t); the reason

for this may be that only the traceless part of the stress is
involved, and the underlying correlations may be shorter
ranged.

The second order Chapman-Enskog correction to the dis-
tribution function is inversely proportional to the density, and
thus the Sonine polynomial expansion coefficients in the
Boltzmann equation are as well. This is cleaniyt the case
for the data shown in Table I. On the other hand, there is at
least one important point of similarity between the higher-
density results and the prediction of the Boltzmann equation;
namely, for the more probable momenta, i V2mkgT,

g 1 the nonequilibrium correction to the distribution function is
OE i Lt et Lt Lt L 0] dominated by the contribution from the zeroth order Sonine
1 2 3. 4 5 6 polynomial. Hence, a simple, albeitl hog correction to the

Boltzmann equation would be to multiply the collision term

FIG. 3. The ratio of the momentum-dependent relaxation time td?y some density- and temperature-dependent factor. In prac-
the collision time,r.=1[4(wkgT/m)¥2po?], for T*=1.5 for the  tice, this is precisely what happens with the Enskog modifi-
reduced densities shown. The dashed curves are obtained fromcation to the Boltzmann equation in steady shear flofv
five-term Sonine polynomial expansion. The error bars represerRef. [1], Sec. 16.3B8for dense hard sphere gases. Moreover,
two standard deviations. Note that the nonequilibrium correctionin the Enskog approximation it turns out that
will be largest roughly ap* ~2T*.

1.5 p'=0.8

L
T T T T T [T T [T T [T T [T T [T O[T T[T 7T 771

1.5E p=05

Tp=

2
fo o’ (32 P X o

and is shown in Fig. 3. The error is largest at either small or . 3 - _
large momenta, since the probability of observing these moWhereb=zmo~ andAdg(p) is the second order Chapman-

menta is small and the statistics are poorest; this leads to tHgSk0g correction to the distribution function obtained from
large statistical errors indicated in Fig. 3. the Boltzmann equation, e.g., as can be constructed using the

It is interesting to note that the relaxation time is roughly SOnine polynomial expansion coefficients given in Table II.
linear in momentum in the portion of the figure where the!n @ddition,y and the equilibrium pressugg, are related as
statistical error is small. Moreover, the variation is not very
large. Figure 3 also shows the result of summing the Sonine ph=pkeT(1+bpy), (3.9
polynomial expansioificf. Eq. (2.20)], using the coefficients
computed from EQq(2.22 as reported in Table I. In both
methods, integrals of the required time correlation functions
were numerically computed between 0 anénd the long-
time results fitted to a constant. Note that the error will in-
crease as the order of the Sonine expansion coefficient is
increased, since these have increased weight from higher
momenta, where the statistical error is greater.

Table Il gives the prediction of the Boltzmann equation,
obtained from a three term expansion using the method de-
scribed in Ref[1] and using the collision integrals tabulated
in Ref.[2]. As was mentioned above, the theory is supposed
to give results equivalent to that of the Chapman-Enskog
expansion ap— 0. By comparing the lowest-density data in
Tables | and Il we see that this is indeed the case; the non-
equilibrium correction is dominated by the leading term and T T T T T o o
the agreement is excellefdbout 1% in the leading coeffi- 0 0.10203040506070809 1
ciend), especially given that there are truncation errors asso- P
ciated with the method used to calculate the low-density re- £ 4. The ratio of the leading Sonine polynomial expansion
sults. In addition, remember that we are using a cutoffepefficient to the value predicted by the Boltzmann equatiee
potential in the simulations, and that significant correctionsrapie 1)) for the indicated reduced temperatures. The dashed line is
(e.g., in the pressurenust be introduced in some quantities the prediction of the Enskog theory for hard spheres, using a seven-
in order to get accurate results for the full-range potentialsterm virial expansion for the pressure. The error bars represent one
Unlike a static quantity like the pressure, it is not clear whatstandard deviation.

bo/ (bo)s
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TABLE |. Sonine polynomial expansion coefficients. The reported uncertainty is one standard deviation.

p* bo by b, b3 by
T*=15
0.01 11.05%0.004 0.16:0.02 —0.05+0.02 0.06%0.007 —0.066£0.005
0.1 1.18-0.02 0.02@0.004 0.006:0.002 0.6:0.001 0.00Z0.001
0.2 0.616-0.004 0.00&0.002 0.00%0.005 0.00%*0.001 —0.003£0.001
0.3 0.4270.004 0.008% 0.0005 0.0016:0.0004 0.00060.0002 0.0022-0.0005
0.4 0.310:-0.003 0.011*0.001 0.004:0.001 —0.0007-0.0005 —0.0008+0.0004
0.5 0.2570.001 0.011*+0.001 0.0033:0.0006 0.001%0.0005 0.000Z 0.0003
0.6 0.204:0.003 0.008& 0.002 0.0025:0.0005 0.00080.0004 —0.0003:0.0002
0.7 0.1610.005 0.016:0.002 0.6-0.0007 0.000%£0.0009 —0.0004+0.0005
0.8 0.125-0.005 0.G:0.002 0.00150.0008 0.000% 0.0005 0.00%0.001
0.9 0.1110.004 0.G:0.002 0.00120.0009 —0.0013+0.0007 0.G:0.0009
1.0 0.066-0.004 0.00%0.001 —0.002+0.002 0.00Z0.001 0.6-0.0005
T*=3.0
0.01 9.62£0.05 0.270.03 —0.014£0.006 —0.018£0.009 —0.0363-0.005
0.1 0.9770.004 0.03%0.001 0.0016:0.0008 0.6:0.007 0.6:0.001
0.2 0.495-0.003 0.01780.0005 0.002% 0.0005 0.0026:0.0005 0.00160.0002
0.3 0.326:0.001 0.0136:0.0006 —0.00070.0004 0.6:0.0002 0.0003 0.0002
0.4 0.249-0.001 0.0125:0.0003 0.0022-0.0003 0.0014 0.0001 0.6:0.0001
0.5 0.192:0.001 0.01020.0006 0.00190.0002 0.00020.0002 0.00003 0.00007
0.6 0.1606-0.0009 0.0050.001 0.0006:0.0002 —0.0014-0.0002 —0.0012+0.0005
0.7 0.1277#0.0009 0.00620.0004 —0.0003:£0.0003 —0.0001+=0.0002 0.:0.0001
0.8 0.102-0.002 0.0063:0.0008 0.00120.0002 0.0006 0.0002 0.00006 0.00009
0.9 0.085-0.001 0.0006:0.0004 0.000% 0.0002 0.000%0.0003 —0.0004t0.0002
1.0 0.064-0.001 0.00140.0004 0.6:0.0004 0.0002:0.0002 0.0003 0.0002
T*=50.0
0.1 0.3764-0.0006 0.0176:0.0005 0.002% 0.0002 0.0026 0.0005 0.6:0.0002

and hencey can easily be expressed in terms of the coeffi-ever, neither the Enskogn or the Boltzmann equation explic-
cients in the virial expansion of the pressure or in terms oftly includes the elastic effects discussed in the Appendix,
and as we have shown, these lead to an enhancement of

the hard-sphere pair cavity function at contact.

The ratio ofbg to its Boltzmann equation value is shown C(p,t). This apparently overcomes the shorter decay time at
in Fig. 4 along with the Enskog prediction. Although the intermediate densities, thereby resulting in a net increase in
differences between this work and the Enskog prediction der,/ 7. (see Fig. 4 Indeed, the extent of the initial rise de-
crease as the temperature is increased, clearly, very differenteases as the temperature is increased, and closer agreement
trends are observed. One possible explanation for this lies iwith the Enskog prediction is obtained.
what the Enskog modification includes; for shear flow, thisis Of course, there are deviations from what is predicted by
primarily the effect of a higher average local density, andthe Boltzmann and Boltzmann-Enskog equations, even with
hence a higher collision rate at the collision radius. In terms fitted collision rate. For example, we find thgt/b, varies
of this work, a higher collision rate should lead to a fasterwith density(see Table)l, while the Boltzmann-Enskog ratio
decay of correlations, and indeed this is seen when looking aemains constante.g., atT* =1.5, p* =0.5, b;/by=0.043
the decay’s ofC(p,t) for different densities; i.e., they decay compared with the Boltzmann-Enskog prediction of 0.01;
faster than would be expected simply based on the collisiosee Table ). This is also clearly seen in the variation of

rate 7, 1. This alone would lead to a reduction of com-

pared with the prediction of the Boltzmann equation. How-

TABLE Il. Chapman-Enskog Sonine polynomial expansion

coefficients.

T* p* bo

p* by

p* by

15 0.109599 0.00100065  —0.000204088
3.0 0.098303 0.00279743 0.000145408
50.0 0.0386414 0.00168169 0.000234626
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7o/ 7c With momentum shown in Fig. 3.

IV. CONCLUDING REMARKS

In this work we have shown how to apply response theory
and computer simulation to the calculation of the nonequi-
librium velocity distribution function in the linear regime,
and at arbitrary densities. As expected, results equivalent to
those obtained from the Boltzmann equation are obtained in
the limit of infinite dilution, but qualitative deviations from
the prediction of the Boltzmann or Boltzmann-Enskog equa-
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tion set in as the density is increased. Surprisingly, the funcand where, henceforth, repeated indices are summed. In ob-
tional form of the first correction to the Boltzmann equationtaining Eq.(A2) one of the time derivatives was moved to
reasonably describes what is obtained from response theorthe stress tensor and the overall sign changee so-called
however, the amplitude deviates from what is predicted bydot-switching property by using the fact that the equilib-
either the Boltzmann or the Boltzmann-Enskog equation. Asium average is stationary. The various momentum averages
was argued in the preceding section, this is likely due to thare easily done and E¢A2) becomes

short-time elastic effects not present in the low-density theo-

ries. That the Enskog theory makes reasonable predictions ) #(p)
for kinetic contributions to the hard-sphere transport coeffi- CuP(p,0)= —| —=| 2p«F]FF)
cients has been known for some tif6]; however, as we ap” mNkgT
have shown here, the underlying reason for this is much B
more general, namely, the full single particle velocity distri- +pAFIFS) +p” rti}/
bution is dominated by the first Sonine polynomial and thus b : 7 J
has the same functional form as those predicted by the
Boltzmann-Enskog equations.
- =—"“—p)2( pPA(FIFY)
N(mkgT)
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APPENDIX: = SHORT-TIME EXPANSION where the second equality is obtained by dropping terms that

Here we consider the short-time expansion of the timeare diagonal ina,8. The final step involves replacing the
correlation functionC*#(p,t) [Eq. (2.18]. It is straightfor-  last force factors by momentum time derivatives, again using
ward to obtain the first few terms in the Taylor expansion. Atthe dot-switching property, and performing the resulting mo-

t=0 it is easy to show that mentum integrations; this gives
2
P p(p)
C(p.0)= : Al o ¢(p) [4 "
(PO= T A C ’B(p.o)Zm 3(Vi-Fi)p“p”
B
where ¢(p) is the equilibrium momentum distribution func- 9°FP
tion [see Eq(2.13)]. +{r P p’p”
The next order terms are slightly more complicated. First, ary ar;

note that for isotropic systen®“#(p,t) is an even function 8 anf o
of p. This, combined with time-reversal symmetry, implies =_ MJ dr g@(r)r[r2u”(r)
that it is also an even function of and hence the next non- 15m%kgT  Jo
vanishing term requires the second order time derivative. It , ,
is easy to show that +12ru”(r)+18u'(r)], (A5)

. d (8(p— pi)Fiy'T“’B> where the second equality is obtained for isotropic systems

C“"B(D,O)=a—p7 NKaT : (A2)  interacting through a pairwise additive pair potentigt),

g@(r) is the pair correlation function, and diagonal terms
have again been dropped.

h
where It is easy to show that the right hand side of EA5) is
2pEA + pPE E8 oY negative for any repulsive power-law potential(r)
Y PiFi TP a& i pj _ a . . - .
TPt r{— —, (A3) =e(alr)“, with 1<a<8, and is positive otherwise. In fact,
gri m for such potentials
.. 8 o ﬁ 1l _1 _8 .
Enb(p0)= TP $(P)PP a(lg;l (a—1)(a )f dz 7 Ve 3y (ol Be)] V) (A63
0

8mp(p)p*pPo(Be)y? (o) a?(1-8la)l (2—1la)
15m?

as a—x or p—0, (A6b)
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wherey(®)(r) is the pair cavity function. Note that the initial By combining Eqs(Al) and(A5), we see that
curvature diverges as the hard-sphere limit is approached 5

(i.e., a—02) and probably signals nonanalytic short-time de- Clpit)~ pP=é(p) 1—t2477pfxdr @()r[r2u(r)
pendencde.g., adt|). For the 6-12 potential and units used P mksT 15mJq g

in this work, Eq.(A5) gives

+12ru”(r)+18u’(r)]). (A8)

. 128w *ph (= 5r6+44
BB (p,0)= p¢>(Tp)p P fodr

@)y ———
c 9@ —F—.
r _— , . .
(A7) Thus, the initial relative curvature, i.e., @(p,t)/C(p,0), is
the same for all momenta. Its origin is elastic in nature and
which explains why the observed initial curvature is alwaysinvolves averages similar to those found in the classic work
positive. of Zwanzig and Mountaif17].
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