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Nonequilibrium velocity distributions in liquids: Systems under shear

T. Croteau and D. Ronis
Department of Chemistry, McGill University, 801 Sherbrooke Ouest, Montre´al, Québec, Canada H3A 2K6

~Received 16 August 2002; published 10 December 2002!

A Green-Kubo expression for the nonequilibrium correction to the velocity distribution function is studied in
a molecular dynamics simulation for systems interacting through a 6-12 potential and undergoing linear shear.
As a function of velocity, the first correction to the distribution function has a form similar to what would be
obtained from the Boltzmann-Enskog equation, although the amplitude is qualitatively different, except at
infinite dilution. The difference comes from elastic effects seen in the short-time behavior of the underlying
time correlation functions.
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in
ca

n
s

he

ts
d
a

io
di
tri
th
ri-
b-
s

re
in

a
e
o
u

he
S
ng

e
ec
ty
ly
n

m
p
e

.

f a
n

n
ity
e-

e

bo

m
i-

o

e
e of
I. INTRODUCTION

The study of distributions and correlation functions
nonequilibrium systems is a central problem in statisti
mechanics. In dilute gases, the Boltzmann equation@1,2# or
its generalizations@3# are the usual starting points, while i
dense systems, several approaches have been used,
phenomenological, some based on kinetic theory, and ot
on linear response theory@4#. Much of this work focused on
the configurational distribution function, which exhibi
long-ranged correlations in simple nonequilibrium stea
states@5–7#, thereby making them more amenable to me
surement. Nonetheless, there are nonequilibrium correct
to the velocity distribution, and while hard to measure
rectly, they are easy to probe indirectly through their con
butions to the nonequilibrium stress, heat current, etc. In
work, we will examine the corrections to the velocity dist
bution function in systems linearly displaced from equili
rium, and, in particular, will apply the theory to fluid system
subjected to a linear shear gradient.

The approach we follow is based on Kubo’s linear
sponse theory@8# and was used to consider correlations
simple nonequilibrium fluid systems@5–7#. This theory is
summarized in Sec. II with the particular goal of the line
correction to the velocity distribution function in mind. W
end up with a modified Green-Kubo expression for the c
rection, and this is calculated in a molecular dynamics sim
lation of particles interacting through a 6-12 potential. T
results of the simulation are presented and discussed in
III. Two of these results are noteworthy. First, the underlyi
Green-Kubo time correlation functions all show a short-tim
increase, which is analyzed in detail in the Appendix. S
ond, the functional form of the correction to the veloci
correlation function is well described by a one Sonine po
nomial expansion, just as is found in the Boltzmann a
Boltzmann-Enskog equations,even at liquid densities. The
coefficient of this expansion is qualitatively different fro
that found in the Boltzmann and Boltzmann-Enskog a
proaches, the difference being related to the short-time
fects. Finally, Sec. IV contains some concluding remarks

II. THEORY

A. Linear response

In this section, we briefly summarize the derivation o
linear constitutive relation for an arbitrary mechanical qua
1063-651X/2002/66~6!/066109~8!/$20.00 66 0661
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tity B, using Kubo’s linear response theory~cf. Ref. @8#!
presented in Ref.@5#. The fundamental microscopic equatio
governing the behavior of the distribution function or dens
matrix in classical or quantum nonequilibrium statistical m
chanics is the Liouville equation, i.e.,

] f ~ t !

]t
52 iL ~ t ! f ~ t !, ~2.1!

where f (t) is the distribution function or density matrix, th
Liouville operator is defined as

iL ~ t !A[H $A,H~ t !%, classical,

i

\
@A,H~ t !#, quantum,

~2.2!

and where $ . . . , . . .% and @ . . . , . . .# denote Poisson
brackets and a commutator, respectively. Following Ku
@8#, we write

H~ t ![H01H1~ t ! ~2.3!

and

L~ t ![L01L1~ t !, ~2.4!

whereH0 governs the behavior of our system at equilibriu
while H1(t) is responsible for taking the system out of equ
librium, and is written as

H1~ t ![2A* F~ t ![2(
a

E dr Aa~r!Fa~r,t !, ~2.5!

where Fa(r,t) is an external field, and whereAa(r) is a
mechanical variable or operator.~We use sans serif type t
denote a column vector of variables.!

If Eq. ~2.1! is solved perturbatively to first order in th
external fields and the result used to compute the averag
a mechanical variableB, it follows that

b̂~ t ![^B~ t !&NE2^B&;2bE
2`

t

dŝ ḂKubo~ t2s!Â&* F~s!,

~2.6!
©2002 The American Physical Society09-1
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whereb[1/kBT, ^•••&NE and^•••& denote nonequilibrium
and equilibrium grand canonical averages, respectively,Ḃ(t)
is the time derivative of the mechanical operatorB, and the
subscript Kubo indicates a so-called Kubo transform
namely,

BKubo~ t ![E
0

1

dl B~ t2 i b\l!, ~2.7!

and, of course, is necessary only for quantum systems.
In a relaxation experiment, the system is removed fr

equilibrium by adiabatically switching on the external field
whent50 is reached, the fields are removed, and the sys
relaxes back to equilibrium. Under these circumstances,
~2.6! gives

b̂~ t !5H ^B̂Kubo~0!Â&* bF for t<0,

^B̂Kubo~ t !Â&* bF for t.0,
~2.8!

where we have assumedF(t)5eetF for t<0, e→01.
Equation ~2.8! is not quite what we want; it gives th

average deviation from equilibrium in terms of the initi
values of the external fields used to produce the nonequ
rium state, and as such, long-range effects, like those as
ated with the boundaries of the system, may have to be c
sidered when calculating the time correlation functio
Moreover, we will require the correlation functions for ma
roscopic times. Both of these difficulties are associated w
the macroscopic behavior of the system, behavior well
scribed by phenomenological equations, like the hydro
namic equations, etc. On the other hand, we expect
many quantities have simple constitutive laws giving them
terms of some finite set of nonequilibrium state variables t
specify the long-time and -length scale phenomena; e.g.
densities of conserved quantities or broken-symmetry v
ables.

To obtain this constitutive relation, at least in the line
approximation, we simply use Eq.~2.8! to expressbF in
terms of the deviations of the state variables~the â’s! and
then use the result for an arbitrary average; for a class
system, this gives

b̂~ t !5^B̂~ t !Â&* ^Â~ t !Â&21
* â~ t ! ~2.9a!

5F ^B̂Â&* ^ÂÂ&212E
0

t

dŝ Ḃ‡~s!Ȧ‡&* ^Â~s!Â&21G* â~ t !,

~2.9b!

where, henceforth, we focus on classical systems, and
the Kubo subscripts. The quantity

Ḃ‡~s![Ḃ~s!2^Ḃ~s!Â&* ^Â~s!Â&21
* Â~s! ~2.10!

is called the dissipative part ofḂ(s), and is the part of the
rate of change ofB not described by the linearized macro
scopic equations@cf. Eq. ~2.9b!#. In particular, when the time
scales associated with theA’s are much longer than that ofB,
as can be the case for the densities of conserved variabl
06610
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the zero-wave-vector limit, one can evaluate the time co
lation functions containing theA’s at zero time.

Equation~2.9b! generalizes the well known Green-Kub
relations for the transport coefficients@which are obtained if
Eq. ~2.9b! is used for the stress tensor or energy curre#.
There are alternate derivations of this result and the der
tion can be extended to nonlinear order or further resumm
in several ways~see Ref.@9#!.

Here we are interested in the nonequilibrium singlet g
neric distribution function in a system subjected to a unifo
shear. This corresponds to taking

B~r,p;t ![(
i 51

N

d„r2r i~ t !…d„p2pi~ t !…, ~2.11!

where r i and pi are the position and momentum of thei th
particle, respectively. By taking the nonequilibrium sta
variablesA to be the densities of the conserved variabl
energy (E), number (N), and momentum (P), and by as-
suming a steady uniform shear gradient Eq.~2.9b! becomes

fNE~r,p;t ![r21^B~r,p;t !&NE5f~p!@11bp•v~r!#

1DFJ ~p!:“v~r!, ~2.12!

wherer[N/V is the number density,v(r)[p(r)/mr(r) is
the local velocity,

f~p![
e2p2/2mkBT

~2pmkBT!3/2
~2.13!

is the equilibrium momentum distribution,m is the mass of
the particles,

DFJ ~p![E
0

`

dt
K (

i
d~p2pi~ t !! tJT

‡L
NkBT

, ~2.14!

tJT[(
i

pi pi

m
1

1

2 (
j Þ i

r i , jF i , j ~2.15!

is the well known expression for the stress tensor in a o
component system interacting through pairwise addit
forces, and@see Eq.~2.10!#

tJT
‡5 t̂JT2 1IF S ]ph

]r D
e

N̂1S ]ph

]e D
r

ÊG , ~2.16!

whereph is the equilibrium pressure ande[^E&/V. In ob-
taining Eqs.~2.12! and ~2.16! some simple equilibrium mo-
mentum averages have been carried out.

The first of the nonequilibrium terms in Eq.~2.12! has a
trivial origin; namely, it is there to correct the equilibrium
distribution to the local rest frame, or local equilibrium,
the fluid ~here to linear order! and is analogous to what i
found in the leading order Chapman-Enskog solution of
Boltzmann equation~cf. Ref. @1#!. By using the methods o
Ref. @9#, it is straightforward to show that this is no acciden
and that all the higher-order nonlinear corrections aris
9-2
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NONEQUILIBRIUM VELOCITY DISTRIBUTIONS IN . . . PHYSICAL REVIEW E66, 066109 ~2002!
from the transformation to a local rest frame are present
can be resummed to show that

f~p!→f„p2mv~r!…. ~2.17!

In general, this is a trivial effect, and henceforth we assu
that the measurement is done in the local rest frame,
v(r)50.

On the other hand, the last of the nonequilibrium terms
Eq. ~2.12! does not have a trivial origin, and its computatio
is the main objective of this work. The time correlation fun
tion in Eq.~2.14! is also a tensor function of the momentum
and as such will be more difficult to simulate than the Gre
Kubo time correlation functions for the standard transp
coefficients.

Some simplification can be obtained by consider
steady states or incompressible fluids, and we assume
henceforth. In either case,“•v(r)50, and thus, the diago
nal parts of the time correlation function may be omitted

Symmetry can be used to further simplify the expressi
in an isotropic system, it follows that the integrand appear
in Eq. ~2.14! can be written as

CJ ~p,t ![
K (

i
d„p2pi~ t !…tJ̊TL

NkBT
5S p̂p̂2

1

3
1IDC~p,t !,

~2.18!

where the+ denotes the traceless part, and where

C~p,t !5
3K(

i
d„p2pi~ t !…pi~ t !pi~ t !: tJ̊TL

8NpkBTp4 . ~2.19!

This last result is obtained by doubly contracting with m
mentum vectors and integrating over a unit moment
sphere. Note that thed function is for themagnitudeof the
momentum, and gives some sampling advantages in the
merical work to be presented below.

B. Sonine polynomial expansion

Another way in which to simplify the calculation of th
correlation functions needed for the distribution function
to consider an expansion in terms of some convenient c
plete set of functions, thereby avoiding the sampling iss
associated with thed functions that appear in Eq.~2.19!. In
Ref. @6# it was shown how the general expressions

DFJ (p) give results identical to those of the Chapma
Enskog solution to the Boltzmann equation to leading or
in density. Hence, this suggests that we use the same f
tions as those used in the Chapman-Enskog theory, and
by-product this choice will allow us to easily study the ran
of validity of the low-density results.

The Chapman-Enskog solution gives an integral equa
for the correction to the distribution function that is solv
by expanding in Sonine polynomials. Thus we write
06610
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DFJ ~p!52S zz2
1

3
z21ID (

n50

`

bnLn
5/2~z2!f~p!, ~2.20!

whereLn
5/2(x) is a generalized Laguerre polynomial~or So-

nine polynomial! @1#, z[p/A2mkBT is a reduced momen
tum, and the factor of 2 was introduced to follow Chapm
and Cowling’s notation. By using the orthogonality prope
ties of the Sonine polynomials~see Ref.@1# or @10#!, it is
straightforward to show that

bn5
n!G~ 7

2 !

10mkBTG~ 7
2 1n!

E dpLn
5/2~z2!pp:DFJ ~p!.

~2.21!

Lastly, by using the linear response expression forDFJ (p)
@cf. Eq. ~2.14!# it follows that

bn5
n!G~ 7

2 !

10G~ 7
2 1n!

E
0

`

dt
K (

i
Ln

5/2
„z i

2~ t !…pi~ t !pi~ t !: tJ̊TL
m~kbT!2N

.

~2.22!

These coefficients will be evaluated in the molecular dyna
ics work to be presented below.

C. Molecular dynamics

The time correlation functions were calculated in a co
ventional molecular dynamics~MD! simulation. Following
Verlet ~see Ref.@11#!, a system of 864 particles were place
on a face-centered cubic lattice and the dimensions of
cell adjusted so as to give the desired density of the ga
liquid. An initial set of velocities is assigned, drawn from
Maxwell-Boltzmann distribution appropriate to the tempe
ture of interest, with a total linear momentum equal to ze
The temperature was reequilibrated during aging by calcu
ing the average kinetic energy and rescaling the velocitie
give the desired kinetic temperature; this was repeated u
the average was within 0.25% of the desired value; there
ter, it was allowed to fluctuate, and a further aging per
was performed before starting any averages.

Trajectories for all the particles were computed by in
grating the equations of motion using the Schofield alg
rithm ~see Ref.@12#!, periodic boundary conditions, and Ve
let’s bookkeeping technique for handling the interactio
@11#. The coordinates and momenta of the particles as we
the forces acting on every particle were stored, and ther
dynamic and other properties were calculated as disc
time averages over the dynamical history of the system.

The bining over momenta involved in computingC(p,t)
@cf. Eq. ~2.19!#, increases the sampling error in the simu
tion, especially for improbable momenta~i.e., for p→0 or
p→`), and consequently very long averages must be p
formed. It is neither practical nor necessary to store the en
dynamical history of the quantities of interest in order
9-3
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compute their correlation functions. Since the calculation
the time correlation functions will involve expressions of t
form

C~ t !5
1

M (
s50

M21

A~ t1s!B~s!, ~2.23!

where typically 0<t<Tmax!M ~integer times are assume
here!, the convolution can easily be performed using f
Fourier transforms~FFT’s! and a variant of the overlap-ad
method@13#. The sum is decomposed intoNB blocks ofM 8
terms and Eq.~2.23! is rewritten as

C~ t !5
1

NBM 8
(

m50

NB21

(
s50

M821

A~ t1s1mM8!B~s1mM8!.

~2.24!

The innermost convolution is early performed by ze
paddingB and then using a FFT forM1Tmax points. The
results for the differentm-blocks are then added together@in
practice, this requires one to save the values forA(t) and
B(t) for (m11)M 8<t<(m11)M 81Tmax before zero pad-
ding#.

III. RESULTS AND DISCUSSION

The theory described in the preceding section was im
mented for particles interacting through Lennard-Jones 6
potentials

u~r ![4eF S s

r D 12

2S s

r D 6G . ~3.1!

FIG. 1. The correlation functionC(p,t) ~in the reduced units
described at the beginning of Sec. III! for T* 51.5 andr* 50.5 for
reduced momenta equally spaced in the range 1.5<p* <7.5. The
averages were obtained by averaging the results of 16 indepen
runs, each of length 104 ~in reduced units!.
06610
f
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2

In the numerical work, units wheres51, m51, ande51
are used; and we define the reduced temperature, den
time, and momentum asT* [kBT/e, r* [rs3, t*
[tAe/ms2, andp* [p/Ame, respectively. Note that the re
duced time differs from Verlet’s@11#, by a factor ofA48.
Like Verlet @11#, we use a potential cutoff at a distance
2.5s, a maximum radius for the bookkeeping table~which is
updated every 16 time steps! of 3.3s, a reduced time step o
4.618831023, and an aging time of 1.4434. For argo
e/kB5116 K ands53.465 Å @14#, thus resulting in a time
step and an aging time of 1.03310214 and 3.2310212 s,
respectively. A typical average was about 1028–1027 s long.

Figure 1 shows the time correlation function correlati
C(p,t) as a function of time for a reduced density of 0.5 a
reduced temperature of 1.5. The inset shows the time inte
*0

t dt C(p,t) and shows that the integrals plateau on a mic
scopic time scale. The different curves are for uniformly ch
sen values of reduced momentump* . In general, the overal
magnitude of C(p,t) follows C(p,0)}p2f(p) @cf. Eq.
~A1!#. The relative noise increases as the tails of the dis
bution or long times are approached, the latter as expe
from the analysis in Ref.@15#.

Note the initial rise of all the correlation functions; as
shown in the Appendix, the initial curvature is, in gener
positive for the 6-12 potential, and our data are consist
with this analysis@cf. Eq. ~A8!#. The short-time analysis als
predicts that the initial curvature in the reduced correlat
function C(p,t)/C(p,0) should be independent of mome
tum. This short-time behavior is confirmed in Fig. 2, a
though the behavior at longer times~and consequently in the
integral! depends on the momentum.

A momentum-dependent relaxation time is defined as

ent

FIG. 2. The reduced correlation functionC(p,t)/C(p,0) for the
11 largestC(p,t)’s shown in Fig. 1. The inset shows the time int
grals decreasing in order of increasing momentum~cf. Fig. 3
below!.
9-4
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tp[E
0

`

dt
C~p,t !

C~p,0!
, ~3.2!

and is shown in Fig. 3. The error is largest at either smal
large momenta, since the probability of observing these m
menta is small and the statistics are poorest; this leads to
large statistical errors indicated in Fig. 3.

It is interesting to note that the relaxation time is rough
linear in momentum in the portion of the figure where t
statistical error is small. Moreover, the variation is not ve
large. Figure 3 also shows the result of summing the Son
polynomial expansion@cf. Eq. ~2.20!#, using the coefficients
computed from Eq.~2.22! as reported in Table I. In both
methods, integrals of the required time correlation functio
were numerically computed between 0 andt, and the long-
time results fitted to a constant. Note that the error will
crease as the order of the Sonine expansion coefficien
increased, since these have increased weight from hi
momenta, where the statistical error is greater.

Table II gives the prediction of the Boltzmann equatio
obtained from a three term expansion using the method
scribed in Ref.@1# and using the collision integrals tabulate
in Ref. @2#. As was mentioned above, the theory is suppo
to give results equivalent to that of the Chapman-Ens
expansion asr→0. By comparing the lowest-density data
Tables I and II we see that this is indeed the case; the n
equilibrium correction is dominated by the leading term a
the agreement is excellent~about 1% in the leading coeffi
cient!, especially given that there are truncation errors as
ciated with the method used to calculate the low-density
sults. In addition, remember that we are using a cu
potential in the simulations, and that significant correctio
~e.g., in the pressure! must be introduced in some quantitie
in order to get accurate results for the full-range potenti
Unlike a static quantity like the pressure, it is not clear wh

FIG. 3. The ratio of the momentum-dependent relaxation time
the collision time,tc51/@4(pkBT/m)1/2rs2#, for T* 51.5 for the
reduced densities shown. The dashed curves are obtained fr
five-term Sonine polynomial expansion. The error bars repre
two standard deviations. Note that the nonequilibrium correct
will be largest roughly atp* ;A2T* .
06610
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this correction should be and none was introduced here
seems that they are not too important forC(p,t); the reason
for this may be that only the traceless part of the stres
involved, and the underlying correlations may be shor
ranged.

The second order Chapman-Enskog correction to the
tribution function is inversely proportional to the density, a
thus the Sonine polynomial expansion coefficients in
Boltzmann equation are as well. This is clearlynot the case
for the data shown in Table I. On the other hand, there is
least one important point of similarity between the high
density results and the prediction of the Boltzmann equat
namely, for the more probable momenta, i.e.,p;A2mkBT,
the nonequilibrium correction to the distribution function
dominated by the contribution from the zeroth order Son
polynomial. Hence, a simple, albeitad hoc, correction to the
Boltzmann equation would be to multiply the collision ter
by some density- and temperature-dependent factor. In p
tice, this is precisely what happens with the Enskog mod
cation to the Boltzmann equation in steady shear flow~cf.
Ref. @1#, Sec. 16.33! for dense hard sphere gases. Moreov
in the Enskog approximation it turns out that

DFJ ~p!→
11 2

5 brx

x
DFJ B~p!, ~3.3!

whereb[ 2
3 ps3 andDFJ B(p) is the second order Chapman

Enskog correction to the distribution function obtained fro
the Boltzmann equation, e.g., as can be constructed using
Sonine polynomial expansion coefficients given in Table
In addition,x and the equilibrium pressureph are related as

ph5rkBT~11brx!, ~3.4!

FIG. 4. The ratio of the leading Sonine polynomial expans
coefficient to the value predicted by the Boltzmann equation~see
Table II! for the indicated reduced temperatures. The dashed lin
the prediction of the Enskog theory for hard spheres, using a se
term virial expansion for the pressure. The error bars represent
standard deviation.
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TABLE I. Sonine polynomial expansion coefficients. The reported uncertainty is one standard devia

r* b0 b1 b2 b3 b4

T* 51.5
0.01 11.05960.004 0.1060.02 20.0560.02 0.06960.007 20.06660.005
0.1 1.1960.02 0.02060.004 0.00660.002 0.060.001 0.00260.001
0.2 0.61660.004 0.00860.002 0.00760.005 0.00160.001 20.00360.001
0.3 0.42760.004 0.008160.0005 0.001660.0004 0.000660.0002 0.002260.0005
0.4 0.31060.003 0.01160.001 0.00460.001 20.000760.0005 20.000860.0004
0.5 0.25760.001 0.01160.001 0.003360.0006 0.001160.0005 0.000760.0003
0.6 0.20460.003 0.00860.002 0.002560.0005 0.000860.0004 20.000360.0002
0.7 0.16160.005 0.01060.002 0.060.0007 0.000160.0009 20.000460.0005
0.8 0.12560.005 0.060.002 0.001560.0008 0.000760.0005 0.00160.001
0.9 0.11160.004 0.060.002 0.001260.0009 20.001360.0007 0.060.0009
1.0 0.06660.004 0.00160.001 20.00260.002 0.00260.001 0.060.0005

T* 53.0
0.01 9.6260.05 0.2760.03 20.01460.006 20.01860.009 20.036360.005
0.1 0.97760.004 0.03960.001 0.001060.0008 0.060.007 0.060.001
0.2 0.49560.003 0.017860.0005 0.002160.0005 0.002660.0005 0.001060.0002
0.3 0.32660.001 0.013060.0006 20.000760.0004 0.060.0002 0.000360.0002
0.4 0.24960.001 0.012560.0003 0.002260.0003 0.001460.0001 0.060.0001
0.5 0.19260.001 0.010260.0006 0.001960.0002 0.000260.0002 0.0000360.00007
0.6 0.160660.0009 0.00560.001 0.000660.0002 20.001460.0002 20.001260.0005
0.7 0.127760.0009 0.006360.0004 20.000360.0003 20.000160.0002 0.060.0001
0.8 0.10260.002 0.006360.0008 0.001260.0002 0.000660.0002 0.0000660.00009
0.9 0.08560.001 0.000660.0004 0.000560.0002 0.000560.0003 20.000460.0002
1.0 0.06460.001 0.001460.0004 0.060.0004 0.000260.0002 0.000360.0002

T* 550.0
0.1 0.376460.0006 0.017660.0005 0.002160.0002 0.002060.0005 0.060.0002
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and hencex can easily be expressed in terms of the coe
cients in the virial expansion of the pressure or in terms
the hard-sphere pair cavity function at contact.

The ratio ofb0 to its Boltzmann equation value is show
in Fig. 4 along with the Enskog prediction. Although th
differences between this work and the Enskog prediction
crease as the temperature is increased, clearly, very diffe
trends are observed. One possible explanation for this lie
what the Enskog modification includes; for shear flow, this
primarily the effect of a higher average local density, a
hence a higher collision rate at the collision radius. In ter
of this work, a higher collision rate should lead to a fas
decay of correlations, and indeed this is seen when lookin
the decay’s ofC(p,t) for different densities; i.e., they deca
faster than would be expected simply based on the collis
rate tc

21 . This alone would lead to a reduction oftp com-
pared with the prediction of the Boltzmann equation. Ho

TABLE II. Chapman-Enskog Sonine polynomial expansi
coefficients.

T* r* b0 r* b1 r* b2

1.5 0.109599 0.00100065 20.000204088
3.0 0.098303 0.00279743 0.000145408
50.0 0.0386414 0.00168169 0.000234626
06610
-
f

e-
nt
in
s
d
s
r
at

n

-

ever, neither the Enskogn or the Boltzmann equation exp
itly includes the elastic effects discussed in the Append
and as we have shown, these lead to an enhanceme
C(p,t). This apparently overcomes the shorter decay time
intermediate densities, thereby resulting in a net increas
tp /tc ~see Fig. 4!. Indeed, the extent of the initial rise de
creases as the temperature is increased, and closer agre
with the Enskog prediction is obtained.

Of course, there are deviations from what is predicted
the Boltzmann and Boltzmann-Enskog equations, even w
a fitted collision rate. For example, we find thatb1 /b0 varies
with density~see Table I!, while the Boltzmann-Enskog ratio
remains constant~e.g., atT* 51.5, r* 50.5, b1 /b050.043
compared with the Boltzmann-Enskog prediction of 0.0
see Table II!. This is also clearly seen in the variation o
tp /tc with momentum shown in Fig. 3.

IV. CONCLUDING REMARKS

In this work we have shown how to apply response the
and computer simulation to the calculation of the noneq
librium velocity distribution function in the linear regime
and at arbitrary densities. As expected, results equivalen
those obtained from the Boltzmann equation are obtaine
the limit of infinite dilution, but qualitative deviations from
the prediction of the Boltzmann or Boltzmann-Enskog eq
9-6
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tion set in as the density is increased. Surprisingly, the fu
tional form of the first correction to the Boltzmann equati
reasonably describes what is obtained from response the
however, the amplitude deviates from what is predicted
either the Boltzmann or the Boltzmann-Enskog equation.
was argued in the preceding section, this is likely due to
short-time elastic effects not present in the low-density th
ries. That the Enskog theory makes reasonable predict
for kinetic contributions to the hard-sphere transport coe
cients has been known for some time@16#; however, as we
have shown here, the underlying reason for this is m
more general, namely, the full single particle velocity dist
bution is dominated by the first Sonine polynomial and th
has the same functional form as those predicted by
Boltzmann-Enskog equations.
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APPENDIX: SHORT-TIME EXPANSION

Here we consider the short-time expansion of the ti
correlation functionCa,b(p,t) @Eq. ~2.18!#. It is straightfor-
ward to obtain the first few terms in the Taylor expansion.
t50 it is easy to show that

C~p,0!5
p2f~p!

mkBT
, ~A1!

wheref(p) is the equilibrium momentum distribution func
tion @see Eq.~2.13!#.

The next order terms are slightly more complicated. Fi
note that for isotropic systemsCa,b(p,t) is an even function
of p. This, combined with time-reversal symmetry, impli
that it is also an even function oft, and hence the next non
vanishing term requires the second order time derivative
is easy to show that

C̈a,b~p,0!5
]

]pg

^d~p2pi !Fi
gṫa,b&

NkBT
, ~A2!

where

ṫa,b5
2pi

aFi
b1pi

bFi
a

m
1r i

a
]Fi

b

]r j
g

pj
g

m
, ~A3!
06610
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and where, henceforth, repeated indices are summed. In
taining Eq.~A2! one of the time derivatives was moved
the stress tensor and the overall sign changed~the so-called
dot-switching property!, by using the fact that the equilib
rium average is stationary. The various momentum avera
are easily done and Eq.~A2! becomes

C̈a,b~p,0!5
]

]pg F f~p!

mNkBT S 2pa^Fi
gFi

b&

1pb^Fi
gFi

a&1psK r i
a
]Fi

b

]r j
s

F j
gL D G

52
f~p!

N~mkBT!2 S papb^Fi
gFi

g&

1pgpsK r i
a
]Fi

b

]r j
s

F j
gL D , ~A4!

where the second equality is obtained by dropping terms
are diagonal ina,b. The final step involves replacing th
last force factors by momentum time derivatives, again us
the dot-switching property, and performing the resulting m
mentum integrations; this gives

C̈a,b~p,0!5
f~p!

m2NkBT
S 4

3
^“ i•F i&papb

1K r i
a

]2Fi
b

]r j
s]r j

gL pspgD
52

8prf~p!papb

15m2kBT
E

0

`

dr g(2)~r !r @r 2u-~r !

112ru9~r !118u8~r !#, ~A5!

where the second equality is obtained for isotropic syste
interacting through a pairwise additive pair potentialu(r ),
g(2)(r ) is the pair correlation function, and diagonal term
have again been dropped.

It is easy to show that the right hand side of Eq.~A5! is
negative for any repulsive power-law potentialu(r )
[e(s/r )a, with 1,a,8, and is positive otherwise. In fac
for such potentials
C̈a,b~p,0!5
8prf~p!papbs~be!1/a~a21!~a28!

15m2 E
0

`

dz z21/ae2zy(2)
„s@z/~be!#21/a

… ~A6a!

;
8prf~p!papbs~be!1/ay(2)~s!a2~128/a!G~221/a!

15m2
as a→` or r→0, ~A6b!
9-7
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wherey(2)(r ) is the pair cavity function. Note that the initia
curvature diverges as the hard-sphere limit is approac
~i.e., a→`) and probably signals nonanalytic short-time d
pendence~e.g., asutu). For the 6-12 potential and units use
in this work, Eq.~A5! gives

C̈a,b~p,0!5
128prf~p!papb

5T E
0

`

dr g(2)~r !
5r 6144

r 12
,

~A7!

which explains why the observed initial curvature is alwa
positive.
f
e,

ls

-

n

06610
ed
-

s

By combining Eqs.~A1! and ~A5!, we see that

C~p,t !;
p2f~p!

mkBT S 12t2
4pr

15mE
0

`

dr g(2)~r !r @r 2u-~r !

112ru9~r !118u8~r !# D . ~A8!

Thus, the initial relative curvature, i.e., inC(p,t)/C(p,0), is
the same for all momenta. Its origin is elastic in nature a
involves averages similar to those found in the classic w
of Zwanzig and Mountain@17#.
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